USC Robotics Laboratory
University of Southern California
Los Angeles, California, USA

Mezzanine User Manual

Version 0.00

Andrew Howard
DRAFT ONLY! THIS DOCUMENT IS INCOMPLETE.

This document may not contain the most current documentation on
Mezzanine. For the latest documentation, consult the Player/Stage homepage:
http://playerstage.sourceforge.net

May 5, 2002

Contents

1 Introduction 1
1.1 Description e 1
1.2 History and Legal Stuff 2
1.3 System Requirements 2
1.4 Getting Mezzanine Lo oL 2
1.5 Building and Installing 3
1.6 Bugs 3
1.7 Acknowledgements 3

2 QuickStart Guide 4

3 Using mezzaine 5
3.1 fgrab : frame-grabber interfaceo)
3.2 classify : color classification 6
3.3 blobfind : color blob segmentation 6
3.4 dewarp : image dewarping; image-to-world transformation 7
3.5 ident : object identification 7

4 Using mezzcal 9

A TPC Specification 10
A.1 Signal Handling 10
A.2 Memory-Mapped File Layout 10

ii

Chapter 1

Introduction

Mezzanine is an overhead 2D visual tracking package intended primarily for use
as a mobile robot metrology system. It uses a camera to track objects marked
with color-coded fiducials, and infers the pose (position and orientation) of these
objects in world coordinates. Mezzanine will work with almost any color camera
(even the really cheap ones), and can correct for the barrel distortion produced
by wide-angle-lenses.

Mezzanine is also language and architecture neutral: object poses are written
into a shared memory-mapped file which other programs can read and make use
of as they see fit. Mezzanine itself is written in pure C and was developed under
Linux on x86 hardware.

1.1 Description

Mezzanine consists of three main components:
e mezzanine : the tracking program.
e mezzcal : a calibration program (for settings colors, etc).

e libmezz : an IPC library for communicating with the tracking program.

mezzanine : the tracking program

mezzanine captures images from a frame-grabber using Video4Linux, classifies
and segments the images into colored blobs, groups the blobs into known types
of objects, computes the world coordinates of these objects using a ground
plane constraint (i.e., all objects are assumed to be either on the ground or at
some constant height above the ground), and writes the location of objects into
a shared memory-mapped file. Other processes can from read this file using
libmezz, or through their own native memory-mapped file APL.

On a 700Mhz PIII, mezzanine is able to process 30 frames/second (i.e. the
full NTSC frame-rate) while utilising about 70% of the CPU.

mezzcal : the calibration program

mezzcal is a gui tool used calibrate the system. Users can control the color
classes, blob properties, and image-to-world transformation through a simple
drag-and-drop interface. mezzcal is witten using RTK2 (a GUI toolkit for
robotics applications), which is in turn based on GTK+ (the GIMP Toolkit).

libmezz : the IPC library

The libmezz library provides a simple C interface for reading data from and
writing commands to mezzanine. This library is provided partly as a reference
and partly as a convenience. Users can write native interfaces to mezzanine
in any language that supports access to shared memory-mapped files. See Ap-
pendix A for a complete reference, and check out the examples directory for
sample programs.

1.2 History and Legal Stuff

Mezzanine was developed at the USC Robotics Research Laboratory as part of
the Player/Stage project http://playerstage.sourceforge.net, and is based
partly on code developed for the University of Melbourne’s RoboCup team
http://www.cs.mu.oz.au/robocup. Mezzanine is free software, released under
the GNU Public License. There is absolutely NO WARRANTY.

1.3 System Requirements

Mezzanine is known to work on Linux/x86 using a 2.4 kernel. Video capture is
done using Video4Linux, so it should work with any frame-grabber card sup-
ported by V4L. Mezzanine also requires the following third-party libraries:

e GTK+ 1.2 : The Gimp Toolkit is present on pretty much every Linux
distro, and most other Unix’es. See http://www.gtk.org

e GSL 0.9 or above : The GNU Scientific Library is available as package in
most distros, but often not installed by default. See http://sources.redhat.com/gsl/

1.4 Getting Mezzanine
The latest release of Mezzanine can be found at http://playerstage.sourceforge.net.

From here you can also get the latest, bleeding edge version from the CVS repos-
itory.

1.5 Building and Installing

Mezzanine does not currently use autoconf, so you may have to tweak the make
files a little to get it to compile on your system. On the other hand, if you
already have the required third-party libraries (see above), and you're using a
standard Linux distro, you should be able to just

make; make install

For more detailed instructions, open the Mezzanine tarball and read the README
in the top-level directory.

1.6 Bugs

Mezzanine is research software, and is bound to contain some bugs. If you’ve
broken something (or better yet, fixed something), please submit a bug report to
http://sourceforge.net/playerstage. Make sure you include the Mezzanine
and OS version, together with a detailed description of the problem. While there
is no warranty on this software, we’ll try to fix things for you.

1.7 Acknowledgements

This work is supported by DARPA grant DABT63-99-1-0015 (MARS) and NSF
grant ANI-9979457 (SCOWR), and possibly others.

Many thanks to Gavin Baker (gavinb@antonym. org) for providing the Video4Linux
interface (1ibfg).

Chapter 2

QuickStart Guide

If your frame-grabber card is installed and working, and is available as /dev/videoO,
you should be able to start Mezzanine by typing:

[someuser]$ mezzanine -fgrab.norm NTSC
or
[someuser]$ mezzanine -fgrab.norm PAL

depending on whether you're using an NTSC or PAL camera. You should see
some introductory information about versions, etc, then a list of numbers show-
ing timing information. In another terminal, you can now start the calibration
program:

[someuser]$ mezzcal

This should pop up three windows: one with an image from the camera overlaid
with all sorts of cryptic symbols, another showing a YUV color-space with some
random colored pixels in it, and a third containing a table of blob and object
properties. You are now ready to calibrate the system, for which you will need
to read Chapter 4.

If the above sequence gave you no joy, you might want to try some of the
following;:

e Make sure mezzanine and mezzcal are in your executable path.
e Make sure you have read-write permission on /dev/videoO.
e Is your camera plugged in/turned on?

e Is your frame-grabber supported by Video4Linux? Some cards wont ac-
tually generate images, even though V4L seems to run ok. Try running
xawtv to see if you can get a picture.

If it still doesnt work, you will probably need to read either the V4L documen-
tation or the rest of this manual.

Chapter 3

Using mezzaine

Mezzanine is designed to track fiducials, i.e., color coded markers attached to
the objects we wish to track. KEach fiducial is composed of a pair of solid
colored circles, as shown in Figure ?7. Any pair of colors can be used for the
fiducials, but best results are achieved when the colors are strongly saturated
and are well separated in color space; day-glo orange and green are a good
combination, for example. With these fiducials, Mezzanine can determine the
position and orientation of objects, but not their identity. We therefore rely on
track-continuation to generate consisent object labels. Beware that labels may
swap if two fiducials come into very close proximity.

Mezzanine requires quite a lot of configuration information (for describing
color classes, the size of the fiducials, image-to-world coordinate transforma-
tions, and so on). Configuration information is stored in a file using a simple
section-key-value syntax, and can be overridden on the command line. Thus an
entry in the configuration file that specifices NTSC format for image capture:

fgrab.norm = NTSC
can be overridden on the command line to specify PAL format:
[someuser]$ mezzanine -fgrab.norm PAL

In this example, mezzanine will use the default configuration file; users may
also specify their own configuration file on the command line:

[someuser]$ mezzanine -fgrab.norm PAL myfile.opt

which will load the file myfile.opt, then override the capture format setting.
Note that the configuration program (mezzcal) may write changes into this
configuration file.

3.1 fgrab : frame-grabber interface

The fgrab section of the configuration file specifies the properties of the camera/frame-
grabber combination.

fgrab.norm

or PAL
fgrab.width,
fgrab.height

Specifies the type of video signal. Valid values are NTSC

Image width and height (typically 640x480 for NTSC and
768x576 for PAL). Make sure the values are valid for your

frame-grabber, otherwise strange stuff will happen.

fgrab.depth

Color depth in bits. Valid values are 16 and 32, but only

the former is recommended.

3.2 classify : color classification

The classify section of the configuration file defines the color classes that
will be extracted from the image. Each color class is defined by a set of three
polygons, one for each of the UV, YU and VY color spaces. Only those pixels
that project into all three polygons are assigned to the corresponding color class.
Most of the entries in this section are generated by the calibration program
mezzcal; see Chapter 4 for a complete description of the recommended color

calibration procedure.
classify.mask.poly[n]

classify.class[n] .name
classify.class[n].color

classify.class[n] .vupoly [m]
classify.class[n].yupoly [m]
classify.class[n].vypoly[m]

Specifies the image “mask” polygon:
only those points inside the polygon
will be processed. The polygon is
specified as a series of points in image
coordinates; use mezzcal to edit the
mask.

A descriptive name and color for
the n’th color class (to be used in
mezzcal); only two such classed are
required.

Class polygons in the VU, YU and
VY projections of the YUV color
space. Only those pixels that project
into all three polygons will be as-
signed to this class. Use mezzcal to
edit these values.

3.3 Dblobfind : color blob segmentation

The blobfind section controls the assignment of classified pixels into color
blobs. Most of the entries in this section can be edited using the calibration

program.

blobfind.min_area
blobfind.max_area

blobfind.min_sizex
blobfind.max_sizex

blobfind.min_sizey
blobfind.max_sizey

The minimum and maximum number of pixels in a
blob; blobs which are either too small or too large
will be discarded.

The minimum and maximum width of the blob (in
pixels); blobs which are either too narrow or too
wide will be discarded.

The minimum and maximum height of the blob (in
pixels); blobs which are either too short or too tall
will be discarded.

3.4 dewarp : image dewarping; image-to-world
transformation

The dewarp section controls both the image dewarping (i.e., the removal of
barrel distortion on wide angle lenses) and the transformation from image to
world coordinates. For this, mezzanine needs a set of calibration points whose
position in both image and world coordinates is known. Some care must be taken
in the selection of calibration points: mezzanine uses a 3rd order polynomial
which requires at least 7 non-colinear calibration points. The recommended
procedure for the dewarp calibration is described in Chapter 4.

dewarp.wpos[n] World coordinates of the calibration points.

dewarp.ipos[n] Image coordiantes of the calibration points. Use mezzcal

to generate these values.

3.5 ident : object identification

The ident section controls the number of objects that will be tracked, and
describes the properties of the fiducials.

ident

ident

ident
ident

ident

ident

.object_count
ident.
.class[1]

class[0]

.min_sep
.min_sep

.max_disp

.max_missed

Number of objects to track.

Class index for each of the two colors making up
each fiducial. Will generally be 0 and 1, respec-
tively.

Minimum and maximum separation (in world co-
ordinates) between the two colors making up each
fiducial.

Maximum displacement of the fiducial between suc-
cessive frames (in world coordinates). Set this to
a smaller value if labels are getting swapped when
objects are in close proximity. Set this to a larger
value if objects are getting lost when moving at
high speed.

Maximum number of frames that can be missed
(i.e., in which the object is not seen) before trying
to re-acqure the object elsewhere in the image.

Chapter 4

Using mezzcal

[to do]

Appendix A

IPC Specification

The primary specification for the IPC interface is the header file mezz.h; this
appendix is provided mostly for convenience and is largely auto-generated.

A.1 Signal Handling

The Mezzanine IPC library uses Unix signals to notify processes that new data
is available. After each new frame is acquired and processed, mezzanine sends a
SIGUSERI to each registered process. These processes are expected to catch this
signal and respond by reading the new data from the memory-map. Processes
using libmezz are automatically registered when the library is initialised, and
can use the mezz_wait_event() function to wait for the receipt of new data.
See examples/simple for an example. Processes that are not using libmezz
can register themselves by writing into the pids[] array in the memory-map.
Insert the process pid into into the first null element in this array.

Processes that do not wish to receive signals can monitor the count field in
the memory-map, which is incremented after each new frame has been acquired
and processed.

A.2 Memory-Mapped File Layout

[autogenerate here]

10

